Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Cell Rep ; 43(5): 114127, 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38652660

RESUMEN

Ebola virus (EBOV), a major global health concern, causes severe, often fatal EBOV disease (EVD) in humans. Host genetic variation plays a critical role, yet the identity of host susceptibility loci in mammals remains unknown. Using genetic reference populations, we generate an F2 mapping cohort to identify host susceptibility loci that regulate EVD. While disease-resistant mice display minimal pathogenesis, susceptible mice display severe liver pathology consistent with EVD-like disease and transcriptional signatures associated with inflammatory and liver metabolic processes. A significant quantitative trait locus (QTL) for virus RNA load in blood is identified in chromosome (chr)8, and a severe clinical disease and mortality QTL is mapped to chr7, which includes the Trim5 locus. Using knockout mice, we validate the Trim5 locus as one potential driver of liver failure and mortality after infection. The identification of susceptibility loci provides insight into molecular genetic mechanisms regulating EVD progression and severity, potentially informing therapeutics and vaccination strategies.

2.
Microbiol Spectr ; 12(5): e0041724, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38606982

RESUMEN

Paramyxo- and filovirus genomes are equipped with bipartite promoters at their 3' ends to initiate RNA synthesis. The two elements, the primary promoter element 1 (PE1) and the secondary promoter element 2 (PE2), are separated by a spacer region that must be precisely a multiple of 6 nucleotides (nts), indicating these viruses adhere to the "rule of six." However, our knowledge of PE2 has been limited to a narrow spectrum of virus species. In this study, a comparative analysis of 1,647 paramyxoviral genomes from a public database revealed that the paramyxovirus PE2 can be clearly categorized into two distinct subcategories: one marked by C repeats at every six bases (exclusive to the subfamily Orthoparamyxovirinae) and another characterized by CG repeats every 6 nts (observed in the subfamilies Avulavirinae and Rubulavirinae). This unique pattern collectively mirrors the evolutionary lineage of these subfamilies. Furthermore, we showed that PE2 of the Rubulavirinae, with the exception of mumps virus, serves as part of the gene-coding region. This may be due to the fact that the Rubulavirinae are the only paramyxoviruses that cannot propagate without RNA editing. Filoviruses have three to eight consecutive uracil repeats every six bases (UN5) in PE2, which is located in the 3' end region of the genome. We obtained PE2 sequences from 2,195 filoviruses in a public database and analyzed the sequence conservation among virus species. Our results indicate that the continuity of UN5 hexamers is consistently maintained with a high degree of conservation across virus species. IMPORTANCE: The genomic intricacies of paramyxo- and filoviruses are highlighted by the bipartite promoters-promoter element 1 (PE1) and promoter element 2 (PE2)-at their 3' termini. The spacer region between these elements follows the "rule of six," crucial for genome replication. By a comprehensive analysis of paramyxoviral genome sequences, we identified distinct subcategories of PE2 based on C and CG repeats that were specific to Orthoparamyxovirinae and Avulavirinae/Rubulavirinae, respectively, mirroring their evolutionary lineages. Notably, the PE2 of Rubulavirinae is integrated into the gene-coding region, a unique trait potentially linked to its strict dependence on RNA editing for virus growth. This study also focused on the PE2 sequences in filovirus genomes. The strict conservation of the continuity of UN5 among virus species emphasizes its crucial role in viral genome replication.


Asunto(s)
Filoviridae , Genoma Viral , Filogenia , Regiones Promotoras Genéticas , Regiones Promotoras Genéticas/genética , Genoma Viral/genética , Filoviridae/genética , Filoviridae/clasificación , Paramyxoviridae/genética , Paramyxoviridae/clasificación , Humanos , ARN Viral/genética , Evolución Molecular , Animales
3.
J Infect Dis ; 228(Suppl 7): S631-S634, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37474251

RESUMEN

This case study investigated the long-term expression dynamics of Ebola virus (EBOV) soluble glycoprotein (sGP) in the serum of a patient who was infected with EBOV in West Africa and recovered from acute Ebola virus disease (EVD) at the National Institutes of Health Clinical Center in Bethesda, Maryland. Samples from this patient were collected during acute EVD and during convalescence up to day 361 following illness onset. Although blood samples were negative by reverse transcription-quantitative polymerase chain reaction after recovery from acute EVD, we detected small amounts of EBOV sGP in the serum of the patient long after recovery, potentially indicating viral recrudescence. As this was only observed in a single patient, additional longitudinal patient samples are needed to confirm our hypothesis that EBOV sGP may be an indicator of viral recrudescence long after recovery from acute EVD.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Humanos , Ebolavirus/genética , Glicoproteínas , África Occidental , Maryland
4.
J Infect Dis ; 228(Suppl 7): S617-S625, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37477943

RESUMEN

Ebola virus (EBOV)-Makona infected more than 30 000 people from 2013 to 2016 in West Africa, among them many health care workers including foreign nationals. Most of the infected foreign nationals were evacuated and treated in their respective home countries, resulting in detailed reports of the acute disease following EBOV infection as well as descriptions of symptoms now known as post-Ebola syndrome, which occurred months after the infection. Symptoms associated with this syndrome include uveitis and neurological manifestations. In 1 of our EBOV-Makona nonhuman primate (NHP) studies, 1 NHP was euthanized on day 28 after infection having completely recovered from the acute disease. During convalescence, this NHP developed neurological signs and acute respiratory distress requiring euthanasia. The organ tropism had changed with high virus titers in lungs, brain, eye, and reproductive organs but no virus in the typical target organs for acute EBOV infection. This in part reflects sequelae described for EBOV survivors albeit developing quicker after recovery from acute disease.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Animales , Humanos , Macaca mulatta , Enfermedad Aguda , Progresión de la Enfermedad
5.
Front Microbiol ; 13: 1026644, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36406413

RESUMEN

Ebola virus (EBOV) causes severe EBOV disease (EVD) in humans and non-human primates. Currently, limited countermeasures are available, and the virus must be studied in biosafety level-4 (BSL-4) laboratories. EBOV glycoprotein (GP) is a single transmembrane protein responsible for entry into host cells and is the target of multiple approved drugs. However, the molecular mechanisms underlying the intracellular dynamics of GP during EBOV lifecycle are poorly understood. In this study, we developed a novel GP monitoring system using transcription- and replication-competent virus-like particles (trVLPs) that enables the modeling of the EBOV lifecycle under BSL-2 conditions. We constructed plasmids to generate trVLPs containing the coding sequence of EBOV GP, in which the mucin-like domain (MLD) was replaced with fluorescent proteins. The generated trVLP efficiently replicated over multiple generations was similar to the wild type trVLP. Furthermore, we confirmed that the novel trVLP system enabled real-time visualization of GP throughout the trVLP replication cycle and exhibited intracellular localization similar to that of wild type GP. In summary, this novel monitoring system for GP will enable the characterization of the molecular mechanism of the EBOV lifecycle and can be applied for the development of therapeutics against EVD.

6.
Front Immunol ; 13: 963023, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36059532

RESUMEN

The COVID-19 pandemic response has shown how vaccine platform technologies can be used to rapidly and effectively counteract a novel emerging infectious disease. The speed of development for mRNA and vector-based vaccines outpaced those of subunit vaccines, however, subunit vaccines can offer advantages in terms of safety and stability. Here we describe a subunit vaccine platform technology, the molecular clamp, in application to four viruses from divergent taxonomic families: Middle Eastern respiratory syndrome coronavirus (MERS-CoV), Ebola virus (EBOV), Lassa virus (LASV) and Nipah virus (NiV). The clamp streamlines subunit antigen production by both stabilising the immunologically important prefusion epitopes of trimeric viral fusion proteins while enabling purification without target-specific reagents by acting as an affinity tag. Conformations for each viral antigen were confirmed by monoclonal antibody binding, size exclusion chromatography and electron microscopy. Notably, all four antigens tested remained stable over four weeks of incubation at 40°C. Of the four vaccines tested, a neutralising immune response was stimulated by clamp stabilised MERS-CoV spike, EBOV glycoprotein and NiV fusion protein. Only the clamp stabilised LASV glycoprotein precursor failed to elicit virus neutralising antibodies. MERS-CoV and EBOV vaccine candidates were both tested in animal models and found to provide protection against viral challenge.


Asunto(s)
COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Vacunas Virales , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , Pandemias , Glicoproteína de la Espiga del Coronavirus , Tecnología , Vacunas de Subunidad
7.
Vaccines (Basel) ; 10(3)2022 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-35335067

RESUMEN

The continued progression of the COVID-19 pandemic can partly be attributed to the ability of SARS-CoV-2 to mutate and introduce new viral variants. Some of these variants with the potential to spread quickly and conquer the globe are termed variants of concern (VOC). The existing vaccines implemented on a global scale are based on the ancestral strain, which has resulted in increased numbers of breakthrough infections as these VOC have emerged. It is imperative to show protection against VOC infection with newly developed vaccines. Previously, we evaluated two vesicular stomatitis virus (VSV)-based vaccines expressing the SARS-CoV-2 spike protein alone (VSV-SARS2) or in combination with the Ebola virus glycoprotein (VSV-SARS2-EBOV) and demonstrated their fast-acting potential. Here, we prolonged the time to challenge; we vaccinated hamsters intranasally (IN) or intramuscularly 28 days prior to infection with three SARS-CoV-2 VOC-the Alpha, Beta, and Delta variants. IN vaccination with either the VSV-SARS2 or VSV-SARS2-EBOV resulted in the highest protective efficacy as demonstrated by decreased virus shedding and lung viral load of vaccinated hamsters. Histopathologic analysis of the lungs revealed the least amount of lung damage in the IN-vaccinated animals regardless of the challenge virus. This data demonstrates the ability of a VSV-based vaccine to not only protect from disease caused by SARS-CoV-2 VOC but also reduce viral shedding.

8.
Microbiol Spectr ; 10(2): e0155321, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35319248

RESUMEN

Antibody-dependent enhancement (ADE) of infection is generally known for many viruses. A potential risk of ADE in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has also been discussed since the beginning of the coronavirus disease 2019 (COVID-19) pandemic; however, clinical evidence of the presence of antibodies with ADE potential is limited. Here, we show that ADE antibodies are produced by SARS-CoV-2 infection and the ADE process can be mediated by at least two different host factors, Fcγ receptor (FcγR) and complement component C1q. Of 89 serum samples collected from acute or convalescent COVID-19 patients, 62.9% were found to be positive for SARS-CoV-2-specific IgG. FcγR- and/or C1q-mediated ADE were detected in 50% of the IgG-positive sera, whereas most of them showed neutralizing activity in the absence of FcγR and C1q. Importantly, ADE antibodies were found in 41.4% of the acute COVID-19 patients. Neutralizing activity was also detected in most of the IgG-positive sera, but it was counteracted by ADE in subneutralizing conditions in the presence of FcγR or C1q. Although the clinical importance of ADE needs to be further investigated with larger numbers of COVID-19 patient samples, our data suggest that SARS-CoV-2 utilizes multiple mechanisms of ADE. C1q-mediated ADE may particularly have a clinical impact since C1q is present at high concentrations in plasma and its receptors are ubiquitously expressed on the surfaces of many types of cells, including respiratory epithelial cells, which SARS-CoV-2 primarily infects. IMPORTANCE Potential risks of antibody-dependent enhancement (ADE) in the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been discussed and the proposed mechanism mostly depends on the Fc gamma receptor (FcγR). However, since FcγRs are exclusively expressed on immune cells, which are not primary targets of SARS-CoV-2, the clinical importance of ADE of SARS-CoV-2 infection remains controversial. Our study demonstrates that SARS-CoV-2 infection induces antibodies that increase SARS-CoV-2 infection through another ADE mechanism in which complement component C1q mediates the enhancement. Although neutralizing activity was also detected in the serum samples, it was counteracted by ADE in the presence of FcγR or C1q. Considering the ubiquity of C1q and its cellular receptors, C1q-mediated ADE may more likely occur in respiratory epithelial cells, which SARS-CoV-2 primarily infects. Our data highlight the importance of careful monitoring of the antibody properties in COVID-19 convalescent and vaccinated individuals.


Asunto(s)
Acrecentamiento Dependiente de Anticuerpo , COVID-19 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Complemento C1q , Humanos , Inmunoglobulina G , Receptores de IgG , SARS-CoV-2
9.
mBio ; 13(1): e0337921, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35012339

RESUMEN

The ongoing pandemic of coronavirus (CoV) disease 2019 (COVID-19) continues to exert a significant burden on health care systems worldwide. With limited treatments available, vaccination remains an effective strategy to counter transmission of severe acute respiratory syndrome CoV 2 (SARS-CoV-2). Recent discussions concerning vaccination strategies have focused on identifying vaccine platforms, number of doses, route of administration, and time to reach peak immunity against SARS-CoV-2. Here, we generated a single-dose, fast-acting vesicular stomatitis virus (VSV)-based vaccine derived from the licensed Ebola virus (EBOV) vaccine rVSV-ZEBOV, expressing the SARS-CoV-2 spike protein and the EBOV glycoprotein (VSV-SARS2-EBOV). Rhesus macaques vaccinated intramuscularly (i.m.) with a single dose of VSV-SARS2-EBOV were protected within 10 days and did not show signs of COVID-19 pneumonia. In contrast, intranasal (i.n.) vaccination resulted in limited immunogenicity and enhanced COVID-19 pneumonia compared to results for control animals. While both i.m. and i.n. vaccination induced neutralizing antibody titers, only i.m. vaccination resulted in a significant cellular immune response. RNA sequencing data bolstered these results by revealing robust activation of the innate and adaptive immune transcriptional signatures in the lungs of i.m. vaccinated animals only. Overall, the data demonstrate that VSV-SARS2-EBOV is a potent single-dose COVID-19 vaccine candidate that offers rapid protection based on the protective efficacy observed in our study. IMPORTANCE The vesicular stomatitis virus (VSV) vaccine platform rose to fame in 2019, when a VSV-based Ebola virus (EBOV) vaccine was approved by the European Medicines Agency and the U.S. Food and Drug Administration for human use against the deadly disease. Here, we demonstrate the protective efficacy of a VSV-EBOV-based COVID-19 vaccine against challenge in nonhuman primates (NHPs). When a single dose of the VSV-SARS2-EBOV vaccine was administered intramuscularly (i.m.), the NHPs were protected from COVID-19 within 10 days. In contrast, if the vaccine was administered intranasally, there was no benefit from the vaccine and the NHPs developed pneumonia. The i.m. vaccinated NHPs quickly developed antigen-specific IgG, including neutralizing antibodies. Transcriptional analysis highlighted the development of protective innate and adaptive immune responses in the i.m. vaccination group only.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Vacunas contra el Virus del Ébola , Ebolavirus , Macaca mulatta , Estomatitis Vesicular , Animales , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/uso terapéutico , Vacunas contra el Virus del Ébola/genética , Vacunas contra el Virus del Ébola/inmunología , Vacunas contra el Virus del Ébola/uso terapéutico , Ebolavirus/genética , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/genética , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Macaca mulatta/inmunología , SARS-CoV-2 , Vacunación/métodos , Estomatitis Vesicular/genética , Estomatitis Vesicular/inmunología , Estomatitis Vesicular/prevención & control , Vesiculovirus/genética
10.
Uirusu ; 72(2): 139-148, 2022.
Artículo en Japonés | MEDLINE | ID: mdl-38220158

RESUMEN

Recently, outbreaks of highly pathogenic viruses, such as those of Ebola and Lassa viruses, have become a global public health issue. Such viruses must be handled in biosafety level 4 (BSL-4) laboratories. Currently, 62 BSL-4 laboratories are in operation, under construction, or planned in 24 counties. In this review, I provide an overview of the current status and characteristics of BSL-4 facilities in abroad and introduce my research on the wild-type Ebola virus at the BSL-4 facility in the USA.

11.
Vaccine X ; : 100126, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34778744

RESUMEN

The speed at which several COVID-19 vaccines went from conception to receiving FDA and EMA approval for emergency use is an achievement unrivaled in the history of vaccine development. Mass vaccination efforts using the highly effective vaccines are currently underway to generate sufficient herd immunity and reduce transmission of the SARS-CoV-2 virus. Despite the most advanced vaccine technology, global recipient coverage, especially in resource-poor areas remains a challenge as genetic drift in naïve population pockets threatens overall vaccine efficacy. In this study, we described the production of insect-cell expressed SARS-CoV-2 spike protein ectodomain constructs and examined their immunogenicity in mice. We demonstrated that, when formulated with CoVaccine HTTM adjuvant, an oil-in-water nanoemulsion compatible with lyophilization, our vaccine candidates elicit a broad-spectrum IgG response, high neutralizing antibody (NtAb) titers against SARS-CoV-2 prototype and variants of concern, specifically B.1.351 (Beta) and P.1. (Gamma), and an antigen-specific IFN-γ secreting response in outbred mice. Of note, different ectodomain constructs yielded variations in NtAb titers against the prototype strain and some VOC. Dose response experiments indicated that NtAb titers increased with antigen dose, but not adjuvant dose, and may be higher with a lower adjuvant dose. Our findings lay the immunological foundation for the development of a dry-thermostabilized vaccine that is deployable without refrigeration.

12.
PLoS Pathog ; 17(9): e1009937, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34529738

RESUMEN

Ebola virus (EBOV) expresses three different glycoproteins (GPs) from its GP gene. The primary product, soluble GP (sGP), is secreted in abundance during infection. EBOV sGP has been discussed as a potential pathogenicity factor, however, little is known regarding its functional role. Here, we analyzed the role of sGP in vitro and in vivo. We show that EBOV sGP has two different functions that contribute to infectivity in tissue culture. EBOV sGP increases the uptake of virus particles into late endosomes in HEK293 cells, and it activates the mitogen-activated protein kinase (MAPK) signaling pathway leading to increased viral replication in Huh7 cells. Furthermore, we analyzed the role of EBOV sGP on pathogenicity using a well-established mouse model. We found an sGP-dependent significant titer increase of EBOV in the liver of infected animals. These results provide new mechanistic insights into EBOV pathogenicity and highlight EBOV sGP as a possible therapeutic target.


Asunto(s)
Ebolavirus/patogenicidad , Fiebre Hemorrágica Ebola/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Virales/metabolismo , Replicación Viral/fisiología , Animales , Ebolavirus/metabolismo , Células HEK293 , Humanos , Ratones , Factores de Virulencia/metabolismo
13.
bioRxiv ; 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34518839

RESUMEN

The ongoing COVID-19 pandemic has resulted in global effects on human health, economic stability, and social norms. The emergence of viral variants raises concerns about the efficacy of existing vaccines and highlights the continued need the for the development of efficient, fast-acting, and cost-effective vaccines. Here, we demonstrate the immunogenicity and protective efficacy of two vesicular stomatitis virus (VSV)-based vaccines encoding the SARS-CoV-2 spike protein either alone (VSV-SARS2) or in combination with the Ebola virus glycoprotein (VSV-SARS2-EBOV). Intranasally vaccinated hamsters showed an early CD8 + T cell response in the lungs and a greater antigen-specific IgG response, while intramuscularly vaccinated hamsters had an early CD4 + T cell and NK cell response. Intranasal vaccination resulted in protection within 10 days with hamsters not showing clinical signs of pneumonia when challenged with three different SARS-CoV-2 variants. This data demonstrates that VSV-based vaccines are viable single-dose, fast-acting vaccine candidates that are protective from COVID-19.

14.
Vaccines (Basel) ; 9(6)2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200548

RESUMEN

Ebola virus (EBOV) is the cause of sporadic outbreaks of human hemorrhagic disease in Africa, and the best-characterized virus in the filovirus family. The West African epidemic accelerated the clinical development of vaccines and therapeutics, leading to licensure of vaccines and antibody-based therapeutics for human use in recent years. The most widely used vaccine is based on vesicular stomatitis virus (VSV) expressing the EBOV glycoprotein (GP) (VSV-EBOV). Due to its favorable immune cell targeting, this vaccine has also been used as a base vector for the development of second generation VSV-based vaccines against Influenza, Nipah, and Zika viruses. However, in these situations, it may be beneficial if the immunogenicity against EBOV GP is minimized to induce a better protective immune response against the other foreign immunogen. Here, we analyzed if EBOV GP can be truncated to be less immunogenic, yet still able to drive replication of the vaccine vector. We found that the EBOV GP glycan cap and the mucin-like domain are both dispensable for VSV-EBOV replication. The glycan cap, however, appears critical for mediating a protective immune response against lethal EBOV challenge in mice.

15.
Front Microbiol ; 12: 679210, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248890

RESUMEN

MicroRNAs are small non-coding RNAs that regulate eukaryotic gene expression at the post-transcriptional level and affect a wide range of biological processes. Over the past two decades, numerous virus-encoded miRNAs have been identified. Some of them are crucial for viral replication, whereas others can help immune evasion. Recent sequencing-based bioinformatics methods have helped identify many novel miRNAs, which are encoded by RNA viruses. Unlike the well-characterized DNA virus-encoded miRNAs, the role of RNA virus-encoded miRNAs remains controversial. In this review, we first describe the current knowledge of miRNAs encoded by various RNA viruses, including newly emerging viruses. Next, we discuss how RNA virus-encoded miRNAs might facilitate viral replication, immunoevasion, and persistence in their hosts. Last, we briefly discuss the challenges in the experimental methodologies and potential applications of miRNAs for diagnosis and therapeutics.

16.
bioRxiv ; 2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33501447

RESUMEN

The ongoing pandemic of Coronavirus disease 2019 (COVID-19) continues to exert a significant burden on health care systems worldwide. With limited treatments available, vaccination remains an effective strategy to counter transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recent discussions concerning vaccination strategies have focused on identifying vaccine platforms, number of doses, route of administration, and time to reach peak immunity against SARS-CoV-2. Here, we generated a single dose, fast-acting vesicular stomatitis virus-based vaccine derived from the licensed Ebola virus (EBOV) vaccine rVSV-ZEBOV, expressing the SARS-CoV-2 spike protein and the EBOV glycoprotein (VSV-SARS2-EBOV). Rhesus macaques vaccinated intramuscularly (IM) with a single dose of VSV-SARS2-EBOV were protected within 10 days and did not show signs of COVID-19 pneumonia. In contrast, intranasal (IN) vaccination resulted in limited immunogenicity and enhanced COVID-19 pneumonia compared to control animals. While IM and IN vaccination both induced neutralizing antibody titers, only IM vaccination resulted in a significant cellular immune response. RNA sequencing data bolstered these results by revealing robust activation of the innate and adaptive immune transcriptional signatures in the lungs of IM-vaccinated animals only. Overall, the data demonstrates that VSV-SARS2-EBOV is a potent single-dose COVID-19 vaccine candidate that offers rapid protection based on the protective efficacy observed in our study. ONE SENTENCE SUMMARY: VSV vaccine protects NHPs from COVID-19 in 10 days.

17.
Front Immunol ; 12: 788235, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069564

RESUMEN

The ongoing COVID-19 pandemic has resulted in global effects on human health, economic stability, and social norms. The emergence of viral variants raises concerns about the efficacy of existing vaccines and highlights the continued need for the development of efficient, fast-acting, and cost-effective vaccines. Here, we demonstrate the immunogenicity and protective efficacy of two vesicular stomatitis virus (VSV)-based vaccines encoding the SARS-CoV-2 spike protein either alone (VSV-SARS2) or in combination with the Ebola virus glycoprotein (VSV-SARS2-EBOV). Intranasally vaccinated hamsters showed an early CD8+ T cell response in the lungs and a greater antigen-specific IgG response, while intramuscularly vaccinated hamsters had an early CD4+ T cell and NK cell response. Intranasal vaccination resulted in protection within 10 days with hamsters not showing clinical signs of pneumonia when challenged with three different SARS-CoV-2 variants. This data demonstrates that VSV-based vaccines are viable single-dose, fast-acting vaccine candidates that are protective from COVID-19.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , Ebolavirus/inmunología , Pandemias/prevención & control , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación/métodos , Virus de la Estomatitis Vesicular Indiana/inmunología , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/sangre , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Chlorocebus aethiops , Cricetinae , Modelos Animales de Enfermedad , Ebolavirus/genética , Femenino , Humanos , Inmunogenicidad Vacunal , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Masculino , Plásmidos , Glicoproteína de la Espiga del Coronavirus/genética , Linfocitos T/inmunología , Resultado del Tratamiento , Células Vero , Virus de la Estomatitis Vesicular Indiana/genética
18.
Microorganisms ; 8(10)2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-33036194

RESUMEN

Ebola virus (EBOV) is a highly pathogenic virus with human case fatality rates of up to 90%. EBOV uses transcriptional editing to express three different glycoproteins (GPs) from its GP gene: soluble GP (sGP), GP, and small sGP (ssGP). The molecular ratio of unedited to edited mRNA is about 70% (sGP): 25% (GP): 5% (ssGP), indicating that sGP is produced more abundantly than GP. While the presence of sGP has been confirmed in the blood during human EBOV infection, there is no report about its expression dynamics. In this study, we developed an EBOV-sGP-specific sandwich enzyme-linked immunosorbent assay (ELISA) using two different available antibodies and tested several animal serum samples to determine the concentration of sGP. EBOV-sGP was detected in nonhuman primate serum samples as early as 4 days after EBOV infection, correlating with RT-qPCR positivity. This ELISA might be further developed into a diagnostic tool for detection of EBOV in patients. Furthermore, this study provides insights into the expression dynamics of sGP during infection, which are important to decipher the function that sGP plays during infection.

19.
PLoS Negl Trop Dis ; 14(9): e0008602, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32886656

RESUMEN

Besides the common Fc receptor (FcR)-mediated mechanism of antibody-dependent enhancement (ADE), Ebola virus (EBOV) is known to utilize the complement component C1q for ADE of infection. This mechanism is FcR-independent and mediated by cross-linking of virus-antibody-C1q complexes to cell surface C1q receptors, leading to enhanced viral entry into cells. Using confocal microscopy, we found that virus-like particles (VLPs) consisting of EBOV glycoprotein, nucleoprotein, and matrix protein attached to the surface of human kidney 293 cells more efficiently in the presence of an ADE monoclonal antibody and C1q than with the antibody or C1q alone, and that there was no significant difference in the efficiency of VLP uptake into endosomes between the C1q-mediated ADE and non-ADE entry. Accordingly, both ADE and non-ADE infection were similarly decreased by inhibitors of the signaling pathways known to be required for endocytosis. These results suggest that C1q-mediated ADE of EBOV infection is simply caused by increased attachment of virus particles to the cell surface, which is distinct from the mechanism of FcR-mediated ADE requiring intracellular signaling to promote phagocytosis/macropinocytosis.


Asunto(s)
Acrecentamiento Dependiente de Anticuerpo/inmunología , Complemento C1q/metabolismo , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/inmunología , Glicoproteínas de Membrana/metabolismo , Receptores de Complemento/metabolismo , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Línea Celular , Chlorocebus aethiops , Ebolavirus/patogenicidad , Endocitosis/inmunología , Células HEK293 , Fiebre Hemorrágica Ebola/patología , Humanos , Células Vero , Proteínas Virales/inmunología , Proteínas Virales/metabolismo , Acoplamiento Viral
20.
Antiviral Res ; 183: 104932, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32946918

RESUMEN

Ebolaviruses and marburgviruses, members of the family Filoviridae, are known to cause fatal diseases often associated with hemorrhagic fever. Recent outbreaks of Ebola virus disease in West African countries and the Democratic Republic of the Congo have made clear the urgent need for the development of therapeutics and vaccines against filoviruses. Using replication-incompetent vesicular stomatitis virus (VSV) pseudotyped with the Ebola virus (EBOV) envelope glycoprotein (GP), we screened a chemical compound library to obtain new drug candidates that inhibit filoviral entry into target cells. We discovered a biaryl sulfonamide derivative that suppressed in vitro infection mediated by GPs derived from all known human-pathogenic filoviruses. To determine the inhibitory mechanism of the compound, we monitored each entry step (attachment, internalization, and membrane fusion) using lipophilic tracer-labeled ebolavirus-like particles and found that the compound efficiently blocked fusion between the viral envelope and the endosomal membrane during cellular entry. However, the compound did not block the interaction of GP with the Niemann-Pick C1 protein, which is believed to be the receptor of filoviruses. Using replication-competent VSVs pseudotyped with EBOV GP, we selected escape mutants and identified two EBOV GP amino acid residues (positions 47 and 66) important for the interaction with this compound. Interestingly, these amino acid residues were located at the base region of the GP trimer, suggesting that the compound might interfere with the GP conformational change required for membrane fusion. These results suggest that this biaryl sulfonamide derivative is a novel fusion inhibitor and a possible drug candidate for the development of a pan-filovirus therapeutic.


Asunto(s)
Filoviridae/efectos de los fármacos , Sulfonamidas/química , Sulfonamidas/farmacología , Internalización del Virus/efectos de los fármacos , Animales , Chlorocebus aethiops , Descubrimiento de Drogas , Ebolavirus/efectos de los fármacos , Filoviridae/clasificación , Infecciones por Filoviridae/tratamiento farmacológico , Infecciones por Filoviridae/virología , Células HEK293 , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Humanos , Enfermedad del Virus de Marburg/tratamiento farmacológico , Marburgvirus/efectos de los fármacos , Receptores Virales/metabolismo , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...